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AbstractAbstractAbstractAbstract    
    
Drought stress (DS) is one of the most destructive abiotic stresses that negatively affects plant growth, 

and yield. The intensity of DS is continuously increasing due rapid of water sources, less rainfall, and an increase 
in global warming. The world’s population is increasing at an alarming rate which needs a substantial increase 
in crop production to meet global food needs. Therefore, in this context, we must have to increase crop 
production in the scenarios of rapid climate change and increasing intensity of abiotic stresses. Globally, 
different measures are used to mitigate the adverse impacts of DS, recently biochar (BC) has emerged as an 
excellent soil amendment to mitigate the toxic effects of DS and improve crop production. The application 
maintains membrane integrity, plant water relations, nutrient homeostasis, photosynthetic performance, 
hormonal balance and osmolytes accumulation, and gene expression thereby improving plant performance 
under DS. Moreover, BC application under DS also improves soil organic matter, water holding capacity, soil 
structure stability, and activity of beneficial microbes which can improve the plant performance under DS. In 
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the present review different mechanisms through which BC mitigates the adverse impacts of DS on plants are 
discussed. This review provides new suggestions on the role of BC in mitigating the adverse impacts of DS. 

    
Keywords:Keywords:Keywords:Keywords: biochar; drought stress; hormones; photosynthesis; plant water relations 
 
 
IntroductionIntroductionIntroductionIntroduction    
 
The global population is continuously soaring with a substantial increase in food demand. It is expected 

that the world’s population will be increased by 50% by the end of 2050 therefore, it is mandatory to increase 
food production to meet the rising food needs (Robertson et al., 2023). However, rapid climate change, global 
warming, and the onset of abiotic and biotic stresses are the most impact factors negatively affecting global crop 
production (Ahmadalipour et al., 2019; Zhang et al., 2022). Water shortage is increasing in the main parts of 
the world owing to climate change, mishandling of water sources, and declining rainfalls which has an 
unfavorable impact on crop production (Abdelkhalik et al., 2019; Besser et al., 2021). Water deficiency is 
drought stress (DS) and it can severely reduce plant growth and development (Toscano et al., 2023). Drought 
stress induces cell dehydration, reduces nutrient uptake, disrupts hormone production, damages membrane 
integrity, and decreases photosynthesis thereby causing a marked reduction in plant growth (Khan et al., 2010; 
El-Mogy et al., 2022).  

Drought stress is a major limiting factor for plant growth and productivity because it negatively affects 
different physiological and biochemical processes in plants (Ma et al., 2019; Barros et al., 2021). Water 
deficiency impacts cell division, elongation, differentiation, osmotic adjustment, loss of cell turgor, and 
disturbed energy balance therefore causing a reduction in plant growth (Hou et al., 2020). Further, DS also 
induces the stomata closing which reduces the water losses to prevent dehydration however, it induces CO2 
limiting therefore detrimentally affecting the photosynthesis (Flexas et al., 2009). Photosynthesis is 
fundamental to plant growth however, plants' ability to retain photosynthesis largely depends on 
environmental conditions (Walczyk and Hersch-Green, 2022). Drought stress is a real challenge for plant 
scientists to fulfill food demands (Zhu et al., 2010). Plants are subjected to water deficiency when the supply of 
water to roots is restricted or the water loss transpiration is increased (Anjum et al., 2011). Therefore, 
imbalanced water uptake causes oxidative stress by increased reactive oxygen species (ROS) production that 
damages the proteins, lipids, and DNA and causes a substantial reduction in plant growth and development 
(Cotado et al., 2020; Lin et al., 2022). Plants adopt different mechanisms to counter the toxic effects of DS. 
Likewise, plants maintain the turgor pressure by increasing osmotic adjustment and cell elasticity and 
decreasing cell size by protoplasmic resistance (Takahashi et al., 2021). Besides these plants also activate the 
antioxidant defense system and accumulate osmolytes that ensure the plant's survival under DS (Hassan et 
al., 2020).  

Biochar (BC) has evolved as a key player in improving crop growth and development under normal and 
stress conditions (Moragues et al., 2023; Tang et al., 2022). Biochar has a high exchange cation exchange 
capacity, alkaline nature, nutrient availability, and water-holding capacity thus it improves plant growth under 
stress conditions (Lashari et al., 2013). The application of BC also improves water use efficiency (WUE), 
nutrient uptake, carbon assimilation, and antioxidant activities thus ensuring better plant growth under water 
deficit conditions (Singh et al., 2019; Wang et al., 2020). Biochar also improves chlorophyll synthesis, is 
stomata conductive, maintains membrane stability, and prevents excessive production of ROS that ensures 
better plant growth under DS (Haider et al., 2020). Moreover, BC also induces favourable impacts on soil 
physiological and biochemical properties therefore improving the impact growth under DS (Agbna et 
al., 2017). In the current review, we have provided information on different mechanisms by which BC 
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mitigates deleterious impacts on DS on plants. This is the first in-depth evaluation of the contribution of BC 
to DS mitigation, and it will advance our understanding of BC's current contribution to DS mitigation.  

 
Effect of drought stress on plantsEffect of drought stress on plantsEffect of drought stress on plantsEffect of drought stress on plants    
    
Drought stress negatively affects plant growth by affecting various plant functions including 

photosynthesis, transpiration, nutrient uptake, water potential, sugar and nutrient metabolism, and 
antioxidant and osmolytes synthesis (Figure 1, Singh et al., 2021). Plants activate different genes and induce 
cellular signaling that causes plants to under different physiological and biochemical responses (Tovignan et 
al., 2020). Water deficiency decreases cell growth, induces stomata closure, and reduces cell turgor, leaf water 
contents, and nutrient absorption therefore causing a reduction in plant growth (Tarafdar et al., 2022). The 
plant's physiological responses to drought stress can be either short-term or long-term. The long-term impact 
of DS on plant processes includes disruption of physiological cycles, change in maturity, and yield losses 
(Demidchik, 2018). On the other hand, short-term effects of DS include a reduction in stomata conductivity, 
water potential nutrient, nutrient and water uptake, and turgor pressure (Batool et al., 2018). Plants send 
positive and negative signals between roots and shoots to adapt to environmental conditions (Roblero et al., 
2020; Hassan et al., 2021).   

 

 
Figure 1.Figure 1.Figure 1.Figure 1. Drought stress reduce the seed germination, enzymatic activities, photosynthetic activities, 
nutrients uptake and increases membrane damage, osmolytes accumulation ROS production therefore, 
cause reduction in plant growth 
 
Plants also produce many osmolytes and hormones abscisic acid (ABA), auxin, cytokinins, ethylene, 

gibberellins, and proline that works as signaling molecules and regulate the plant physiological processes under 
DS (Mittler and Blumwald, 2015; Yamada and Umehara, 2015; Wang et al., 2020). DS also induce ROS 
production that affects various plant metabolic and physiological responses and certain ROS works as signaling 
molecule in plants' adaption against stress conditions (Jaspers and Kangasjärvi, 2010; Oğuz et al., 2022). The 
plant's first physiological response under drought stress is the reduction in transpiration by stomata. The 
stomata closing and reduction loss of water is an important plant response to avoid the negative effects of DS 
(Chaves et al., 2009). Stomata closing also affects leaf water contents, chlorophyll synthesis, chloroplast 
fragmentation, gas exchange, nutrient, and water uptake (Table 1) and also suppresses the leaf morphology 
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(Fahad et al., 2017). All these processes directly and indirectly affect photo-synthesis and therefore, cause a 
reduction in plant growth and development (Muhammad et al., 2021). The stomata closing prevents carbon 
dioxide (CO2) use which has a great impact on photosynthesis (Sevanto, 2014) and the reduction of CO2 
uptake causes substantial loss in photosynthetic activity (Flexas et al., 2004). 

 
Table 1. Table 1. Table 1. Table 1. Effect of drought stress on growth, physiological and biochemical functions of different plants  

Plant speciesPlant speciesPlant speciesPlant species    
Drought Drought Drought Drought 

conditionsconditionsconditionsconditions    
Major effectsMajor effectsMajor effectsMajor effects    ReferencesReferencesReferencesReferences    

Brassica 40% FC 

DS reduced the root and shoot growth, leaves, RWC, 
SPAD chlorophyll contents, photosynthetic and 

transpiration rate, stomata conductance, and increased 
MDA and H2O2 production. 

Li et al. (2023) 

Wheat 45% FC 
DS leads to significant reduction in growth traits, leaf 
length, root length root volume and increased MDA, 

H2O2 and antioxidant activities 

Zhang et al. 
(2023) 

Chickpea 40% FC 
Drought reduced leaves, flowers, pods, RWC, 

chlorophyll contents and increased EL, proline and 
GB concentration. 

Keerthi et al. 
(2023) 

Maize 50% FC 
A significant reduction in chlorophyll contents, RWC 

and growth traits was observed with DS, while DS 
increased MDA, EL and proline production. 

Kavian et al. 
(2013) 

Wheat 40% FC 

Water deficiency reduced the photosynthetic and 
transpiration rates, stomata conductance, CO2 

concentration, stomata length and increased soluble 
sugars and AsA, GSH and GSSG activity. 

Jing et al. (2023) 

Maize 25% FC 
Water stress reduced the membrane stability, RWC, 

total soluble proteins, yield and yield traits and 
increased MDA production. 

Mansour et al. 
(2023) 

Mungbean 40% 

Water deficit conditions reduced RWC, 
photosynthetic and transpiration rates, stomata 
conductance, chlorophyll contents, WUE, plant 

height, branches/plant, pods, and seed yield 

Tamanna et al. 
(2023) 

Maize 35% FC 

Water deficiency reduced the root and shoot growth, 
root hydraulic conductivity, photosynthetic and 

transpiration rates stomata conductance, and increased 
EL, MDA and H2O2 production. 

Gong et al. (2023 

Rice 50% 

Drought conditions caused reduction in 
photosynthetic and transpiration rates, chlorophyll 

contents, plant height, panicles production, grain yield 
and increased H2O2 production, APX, CAT and SOD 

activities. 

Khan et al. (2023) 

Wheat 50% 

Water deficit conditions reduced dry matter 
production, RWC, chlorophyll contents, yield and 
increased proline, soluble sugars, soluble proteins, 

MDA, CAT, POD and SOD activity. 

Ning et al. (2023) 

MDA, malondialdehyde, H2O2: hydrogen peroxide, EL: electrolyte leakage, AsA: ascorbic acid, GSH: glutathione, 
GSSG: glutathione disulfide, CAT: catalase, POD: peroxidase, SOD: superoxide dismutase.  

 
Further reduction in transpiration owing to stomata closing under DS also limits the uptake of nutrients 

and their translocation (Amin et al., 2014) and this situation causes a reduction in nutrient concentration in 
plant tissues (Ahanger et al., 2016; Rivas et al., 2016). Moreover, reduced water uptake due to DS also reduced 
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the relative water content (RWC) and caused a reduction in plant physiological functioning (Hartmann et 
al., 2013). Plant leaf water potential is important for plants' survival and photosynthetic processes (Alghabari et 
al., 2015). However, DS significantly reduced the leaf water potential which caused a reduction in plant 
photosynthetic efficiency (Sun et al., 2013). Photosynthesis is the most important process of plants as it directly 
impacts growth, development, and yield (Ashraf and Harris, 2013). Chloroplast is an important organelle for 
photosynthesis; however, DS deteriorates the structure of chloroplast which adversely affects chlorophyll 
synthesis (Ashraf and Harris, 2013; Sun et al., 2014). The decrease in chlorophyll synthesis is a typical 
manifestation of oxidative stress (Faisal et al., 2019) and the reduction of chlorophyll synthesis under DS 
occurs due to photo-oxidation and degradation of chlorophyll (Nezhadahmadi et al., 2013).  

Drought-induced higher ROS production damages plants various physiological and metabolic processes 
(Zou et al., 2021). However, in response to coping with ROS plants activate excellent antioxidant defense 
systems to tolerate the negative effects of DS (Hossain et al., 2013). Besides these plants also produce various 
osmolytes that protect them from the damaging effects of DS. These osmolytes also regulate the osmotic 
balance, maintain water flow stabilize membranes, and prevent the accretion of stress-free radicles (Padmavathi 
and Rao, 2013). Among different osmolytes; proline is an important amino acid that possesses excellent 
antioxidant properties and it plays an important role in preventing cell death (Bhardwaj and Yadav, 2012; 
Mwadzingeni et al., 2016). Likewise, glycine-betaine (GB) is also an important osmolyte and it protects protein 
unfolding and denaturation (Giri, 2011). Besides these plants also accumulate mannitol, sucrose, and trehalose 
which also protect plants by scavenging effects of ROS (Zhang et al., 2020a).  

 
Biochar production processesBiochar production processesBiochar production processesBiochar production processes    
    
The biochar production process has a strong impact on the final characteristics of BC. Pyrolysis is an 

important process used in BC production which involves the conversion of biomass in oxygen-starved 
conditions. Generally, pyrolysis results in the production of bio-oil, syngas, and biochar (Bruun et al., 2012). 
The pyrolysis process is carried out in the presence of inert gas typically nitrogen (Weber and Quicker, 2018). 
In pyrolysis different polymers like cellulose, hemicellulose, and lignin present in biomass are breakdown under 
the influence of heat (Wang et al., 2020b). It is been documented that slow pyrolysis produces more BC and 
less syngas and bio-oil while fast pyrolysis produces less BC and more syngas (Roy and Dias, 2017). It is 
important to note that BC properties are not always homogenous even if the production method is similar 
(Zhao et al., 2013). Pyrolysis temperature is an important factor that affects BC surface area pH, similarly, 
feedstock type also affects the BC organic carbon and nutrient concentration (Zhao et al., 2013; Esfandbod et 
al., 2017).  

Generally low pyrolysis temperature (below 550 °C) produces BC with low ash contents and it shows 
less crystalline structure (Gruss et al., 2019). BC yield is manipulated by feedstock selection processes (Yoshida 
et al., 2008) and BC yield largely depends on the type of feedstock and the temperature of pyrolysis. The 
increase in pyrolysis temperature decreases BC yield while it increases bio-oil yield and it is been also 
documented that pyrolysis temperature above burns off most nitrogen, potassium and sulfur molecules 
(Joseph et al., 2010). Co-pyrolysis is also used to produce BC and it involves pyrolysis of two feedstocks 
(Agegnehu et al., 2017). Hydrothermal carbonization (HTC) is also another important process used to 
produce hydrochars which can also be used as a soil amendment (Allohverdi et al., 2021; Paul et al., 2018).  

 
Soil application of biocharSoil application of biocharSoil application of biocharSoil application of biochar    
    
Due to the addition of organic matter and organic carbon, the application of BC considerably increased 

the soil quality and fertility (Heitkötter and Marschner, 2015). Different particle sizes are needed for the 
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maintenance of water holding capacity (WHC) along with a certain aeration level (Heitkötter and Marschner, 
2015). BC application can remediate the structure of poor soils and application of BC to compacted soils 
ensures better aeration owing to appreciable porosity of BC (Heitkötter and Marschner, 2015). Biochar also 
has a large surface area and higher porosity (Dempster et al., 2012), therefore, field application of BC improves 
the growth and yield of crops by improving nutrient and water uptake (Agegnehu et al., 2017). Biochar 
application to soils results in a greater amount of oxidation and reduction reactions which release the nutrients 
and ensure better plant growth. Biochar can also persist in soil over a long time therefore, there is no need to 
re-apply the BC years which makes it cost cost-effective soil amendment (Joseph et al., 2010). Moreover, over 
time soil organic matter (SOM) is diminished due to weathering, anthropogenic activities, and cultural 
practices (Allohverdi et al., 2021).  

In this context, structure of biochar makes it particularly stable and withstands in soils over a long time 
(Sohi et al., 2010). Additionally, BC also increases the ethylene level in plants and this increase can significantly 
increase the crop yield (Spokas et al., 2010). 

 
Biochar a key player against drought stressBiochar a key player against drought stressBiochar a key player against drought stressBiochar a key player against drought stress    
    
Biochar is an important soil amendment to mitigate the adverse impacts of DS (Siebielec et al., 2020). 

Biochar is known as a black gold of agriculture and its application under DS improves soil moisture, nutrient 
uptake, and cation exchange capacity (CEC) and brings favorable changes in plant physiological and 
biochemical processes thus ensuring better plant growth (Zheng et al., 2019; Odugbenro et al., 2020). In given 
below section we have provided a detailed discussion on how BC can mitigate the adverse effects of DS. 

 
Biochar improves water uptake and protect the membranes to induce drought tolerance  Biochar improves water uptake and protect the membranes to induce drought tolerance  Biochar improves water uptake and protect the membranes to induce drought tolerance  Biochar improves water uptake and protect the membranes to induce drought tolerance      
    
Drought stress is a significant abiotic stress that negatively impacts plant membranes and results in 

cytoplasmic dehydration lipid peroxidation and electrolyte leakage (Hassan et al., 2021). The application of 
BC has been reported to decrease lipid peroxidation by decreasing the ROS which ensures better membrane 
stability and results in EL and better RWC (Hafez et al., 2020). BC also reduces MDA production owing to 
better antioxidant activities and osmolytes accumulation which also ensures better membrane integrity 
(Yildirim et al., 2021). BC also enhanced WUE and water uptake which ensures better RWC and subsequent 
plant growth under water deficit conditions (Mannan et al., 2021). Further, BC application also possesses 
excellent water-holding capacity which improves the water uptake and results in better leaf water contents 
under DS (Licht and Smith, 2017). Other authors also found that BC application improved plant available 
water, RWC which induces positive impacts on photosynthesis, leaf transpiration, and other plant functioning 
under DS (Licht and Smith 2017). Likewise, the study findings of Ahmad showed that BC application (2% 
and 3%) improved leaf water potential, and study findings of Haider et al. (2015) depicted that BC improved 
RWC in sandy soil. Additionally, BC strengthens the antioxidant defense systems, and improves membrane 
stability and RWC, however, it depends on water uptake, soil type, and BC type (Lyu et al., 2016).  

 
Biochar improves nutrient uptake to counter effects of DSBiochar improves nutrient uptake to counter effects of DSBiochar improves nutrient uptake to counter effects of DSBiochar improves nutrient uptake to counter effects of DS    
    
Drought stress disturbs nutrient uptake and causes yield losses, nonetheless, BC is an important soil 

amendment that improves nutrient uptake and ensures better plant growth under water deficit conditions 
(Figure 2). For example, Muhammed et al. (2020) found that BC applied at the rates of 0.75% and 1.5% 
significantly improves N uptake while according to Ibrahim et al. (2020b), BC improves plant performance by 
acting as a slow-release N fertilizer. Biochar-mediated increase in N uptake is associated with improved soil 
CEC owing to the fact higher soil CEC has a better capacity for NH4+ and N utilization (Liang et 
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al., 2020). The study findings of Glaser et al. (2002) showed that BC application to DS conditions improved 
calcium (Ca), magnesium (Mg), and potassium (K) availability while Van Zwieten et al. (2010) discovered that 
adding BC to the soil altered the pH thereby increasing the availability of nutrients. Likewise, other researchers 
found that BC improved the nitrogen (N) uptake and offset the effects of DS (Zheng et al., 2018) and Zoghi et 
al. (2019) noted that BC improved nutrient uptake by increased WUE and CEC under DS. In another study, 
Egamberdieva et al. (2017) noted that combined BC and Bradyrhizobium application improved N and P while 
Liu et al. (2017) found BC made from birch wood in combination with Rhizophagus irregularis decreased N 
and P uptake. 

In a study to investigate the impact of BC on nutrient uptake under DS, Ahin et al. (2016) discovered 
that BC increased N uptake and Durukan et al. (2020) found that BC application to sugar beet plants 
improved P concentration. These authors also suggested that the rate of BC plays an important role in nutrient 
uptake and they found a significant increase in nutrient uptake with increase BC application rate. In another 
study, Langeroodi et al. (2019) applied different rates of BC (0, 5, 10, and 20 t ha-1) to pumpkin plants growing 
under DS and found that BC increased the Mg concentration with an increase BC rate. The study findings of 
Poormansour et al. (2019) showed that BC application (1.25%, 2.5%, 3.75%, and 5%) to faba bean plant under 
DS conditions resulted in increased absorption of Ca and Mg as well as their content in soil.  

 

 
Figure 2.Figure 2.Figure 2.Figure 2. Biochar application improves antioxidant activites, nutrient uptake, photosynthesis, chlorophyll 
synthesis, stomata opening, hormoe and osmolyte balance and reduce ROS production which in turn 
increases plant growth under DS 
 
Biochar protects photosynthetic apparatus to ensure better photosynthesis under DS Biochar protects photosynthetic apparatus to ensure better photosynthesis under DS Biochar protects photosynthetic apparatus to ensure better photosynthesis under DS Biochar protects photosynthetic apparatus to ensure better photosynthesis under DS     
    
Photosynthesis is one of most important physiological processes in plants, however, water deficiency 

substantially reduced the photosynthesis by decreasing electron transport, leaf area and synthesis of 
chlorophyll. The application of BC decreased the negative effects of DS and improves photosynthesis by 
increasing leaf area, chlorophyll synthesis and electron transportation (Manolikaki and Diamadopoulos, 2019). 
Due to a significant increase in chlorophyll synthesis and a decrease in stomata conductance, biochar 
application also buffers the effect of DS on carbon assimilation and photosynthesis (Lyu et al., 2016; Wang et 
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al., 2021). It has been documented that under water deficiency BC application increased WUE which in turn 
increased rate of photosynthesis and reduce non-stomatal limitation (Paneque et al., 2016; Farooq et al., 2021). 
Further, BC application reduce the drought induce ROS production which in turn increases photosynthetic 
rate (Gharred et al., 2022). Moreover, BC also improves stomata length, width and density which leads to 
considerable increase in WUE and photosynthesis under DS (Khan et al., 2021). The use of BC under drought 
conditions improves leaf water relation which is also an important reason of BC mediated increase in 
photosynthesis and transpiration rates under DS conditions (Haider et al., 2015). In a different study, 
Kammann and Graber (2015) discovered that BC supplementation increased assimilate production under DS, 
enhanced soil characteristics, and improved leaf water status. Similarly, Lyu et al. (2016) discovered that the 
addition of BC increased antioxidant and electron transport activities, reducing the harmful effects of drought 
and increasing plant photosynthetic efficiency under DS. 

 
Biochar maintains better osmolytes and hormonal synthesis to counter the effects of DS Biochar maintains better osmolytes and hormonal synthesis to counter the effects of DS Biochar maintains better osmolytes and hormonal synthesis to counter the effects of DS Biochar maintains better osmolytes and hormonal synthesis to counter the effects of DS     
    
Osmolytes serve an essential role in preventing DS, but DS alters the hormonal balance osmolytes 

accumulation, which has a detrimental impact on plant performance. Proline is an important osmolyte 
produced under DS and it acts as a ROS scavenger.  

For example, in drought-stressed M. ciliaris leaves proline concentration was significantly increased 
however, BC treatment lowered the synthesis of proline, possibly as a result of decreased ROS production, 
decreased osmotic stress, and decreased oxidative damage in BC-treated plants (Yildirim, 2021). Other 
researchers discovered that BC and chitosan together reduced the levels of starch, soluble carbohydrates, and 
sucrose (Hafez et al., 2020). Conversely, Gullap et al. (2022) found that drought stress reduced the gibberellins 
(GA) and indoleacetic acid (IAA) and increased the ABA concentration, however, BC application increased 
GA and IAA synthesis and reduced the ABA concentration to counter the toxic effects of DS (Table 2). 
Further Khan et al. (2021) noted that BC application increased the total soluble proteins (TSP) free amino 
acids (FAA) and proline synthesis which countered the toxic effects of DS. In another study combined use of 
AMF and BC countered the toxic effects of DS by increasing osmolytes synthesis, maintaining hormonal 
balance and antioxidant activity (Mickan et al., 2016). Therefore, BC maintains the osmolytes and hormones 
accumulation which protect plants from the damaging impacts of drought and improve plant performance 
under DS.  

 
Table 2. Table 2. Table 2. Table 2. Effect of biochar application on growth, physiological and biochemical functions of plants to 
induce drought tolerance        

Plant Plant Plant Plant 
speciesspeciesspeciesspecies    

Drought Drought Drought Drought 
conditionsconditionsconditionsconditions    

Biochar Biochar Biochar Biochar 
applicationapplicationapplicationapplication    

Major effectsMajor effectsMajor effectsMajor effects    ReferencesReferencesReferencesReferences    

Soybean 25% FC 10 g kg-1 
Biochar application increased stomata conductance, 
CO2 concentration, WUE, root and shoot biomass 

and grain yield. 

Zhang et al. 
(2020) 

Wheat 30% FC 37.18 g kg-1 
The application of BC increased plant height, tillers, 

grain weight, biological and grain yield, WUE and 
leaf chlorophyll contents. 

Haider et al. 
(2020) 

Rapeseed 40% FC 60 t ha-1 

Biochar addition increased chlorophyll contents, 
plant height, 1000 GW, grain yield, oil and protein 
contents, gas exchange characteristics, CAT, POD, 
SOD and proline synthesis and reduced EL, MDA, 

H2O2 contents. 

Khan et al. 
(2021) 

Tomato 70% FC 100 g kg-1 
The addition of BC increased soil water contents, 

plant WUE, plant water relations, gas exchange 
Zhang et al. 

(2023b) 
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characteristics, leaf growth, biomass production and 
reduced ABA production. 

Cabbage 50% FC 10% BC 

BC reduced toxic impacts of drought and improved 
stem diameter, plant height, plant fresh weight, 

chlorophyll concentration, RWC, leaf gas exchange 
properties, CAT, SOD, POD activities, sucrose 

concentration, and NPK, Ca and S uptake. 

Yildirim et al. 
(2021) 

Wheat 

Drought was 
applied by 
skipping 

irrigation at 
tillering and 
grain filling 

stage. 

38 g kg-1 

BC application under DS increased plant height, 
1000 GW, spike length, grain yield, NPK uptake, 
soil organic carbon, and microbial biomass carbon 

and soil enzymatic activities. 

Zaheer et al. 
(2021) 

Wheat 35% FC 20 g kg-1 

The application of BC increased root growth, root 
biomass, chlorophyll synthesis, photosynthetic 

characteristics, proline synthesis, reduced EL, MDA 
and H2O2 production, 

Lalarukh et 

al. (2022) 

Chickpea 50% FC 30 g kg-1 

BC supplementation increased root and shoot 
growth, primary and secondary branches, nodule 
length, photosynthetic pigments, NP uptake, and 

stomata density. 

Hashem et al. 
(2019) 

Barley 30% FC 25 g kg-1 

BC application to drought stress plants improved, 
root and shoot biomass, seed germination, 

chlorophyll synthesis, POD, CAT and SOD 
activities and NPK uptake. 

Gul et al. 
(2023) 

Soybean 30% 20 g kg-1 

BC mitigated the adverse effects of drought by 
increased root and shoot growth, leaf chlorophyll 

contents, stomata conductance, photosynthesis and 
transpiration rate, CAT and SOD activities and 

increased 1000 GW and grain yield. 

Nawaz et al. 
(2023) 

WUE: water use efficiency, NPK: nitrogen, phosphorus and potassium, Ca: calcium, S: sulfur, ABA: abscisic acid  

 
Biochar increases antioxidant activities to counter oxidative damagesBiochar increases antioxidant activities to counter oxidative damagesBiochar increases antioxidant activities to counter oxidative damagesBiochar increases antioxidant activities to counter oxidative damages    
    
Water deficiency cause oxidative stress by increasing the formation of ROS, which harms important 

molecules. Plants have, however, evolved a superb antioxidant defense system to combat the damaging effects 
of DS. For example, in Medicago plants grown under DS showed an increase in superoxide dismutase (SOD) 
activity which improved the membrane stability and provided photo protection to plants (Gharred et al., 
2022). Further, BC also improves the antioxidant activities and increase in ascorbate peroxidase (APX) and 
SOD activity has been observed with BC application (Gharred et al., 2022). Additionally, BC treatment 
mitigates the harmful effects of DS on plants by boosting antioxidant activities (Chaves et al., 2009). In a study, 
Foyer and Noctor (2009) and his coworkers discovered that drought-stressed plants had increased 
AsA/DHAsA ratios and SOD, APX, glutathione peroxidase (GPX), and glutathione reductase (GR) activities, 
but these activities were insufficient to counteract the harmful effects of DS. Nonetheless, BC application (2%) 
appreciably increased AsA/DHAsA ratio, SOD, APX, GPX, and GR activities which countered the oxidative 
damages (Foyer and Noctor, 2009). Moreover, Zulfiqar et al. (2022) also found a significant increase CAT, 
POD and SOD activities owing to BC application which in turn improved plant functioning cell growth and 
reduced the toxic effects of ROS (Zulfiqar et al., 2022). Barley plants given BC showed a noticeable boost in 
their CAT, POD, and GR activities as well, which mitigated the damaging consequences of oxidative damage 



Lihong W et al. (2023). Not Bot Horti Agrobo 51(4):13447 

 

10 
 

 

 

 

 

 

(Hafez et al., 2020). Therefore, reduction of ROS and protection of plants from the negative effects of drought 
stress caused by BC-mediated increases in antioxidant activities boost plant development under drought stress. 

 
Biochar improves genes expression to counter effects of DSBiochar improves genes expression to counter effects of DSBiochar improves genes expression to counter effects of DSBiochar improves genes expression to counter effects of DS    
    
BC improves the gene expression which can counter the toxic effects of DS in plants (Table 2). For 

example, drought-stressed barley plants showed an increase CAT, APX and Mn-SOD gene expression under 
50% FC as compared to 75% and 100% FC, and BC application reduced the expression level of these 
aforementioned proteins under DS (Hafez et al., 2021). Racioppi et al. (2019), on the other hand, discovered 
that BC treatment boosted the expression of CAT, APX, and Mn-SOD genes, which in turn reduced the 
harmful effects of DS. Other researchers also found that BC application activated the auxin-responsive growth-
promoting pathway which stimulated plant growth under DS (Vissenberg et al., 2005). Xyloglucan 
endotransglucosylase/hydrolase (XTHs) genes control the extensibility of the cell wall (Sánchez-Rodríguez et 
al., 2010) and according to Racioppi et al. (2019), the expression of these genes is increased by the 
administration of BC which stimulates plant development under DS. According to Viger et al. (2015), BC 
stimulates IAA and BR growth-promoting pathways, which in turn work to counteract the harmful effects of 
DS and promote improved plant growth by activating Ca2+ and ROS-mediated cell signaling. There are limited 
studies available in the literature about the role of BC in mitigating DS, therefore, more studies must be 
conducted on this aspect for the promising future of BC in mitigating DS.  

    
Biochar nutrition improves plant performance under drought stressBiochar nutrition improves plant performance under drought stressBiochar nutrition improves plant performance under drought stressBiochar nutrition improves plant performance under drought stress    
    
Drought stress reduces the plant's growth through different mechanisms including reduction in 

photosynthesis, nutrient uptake, and increased osmotic and oxidative damage. Nonetheless, BC has been 
reported to improve osmolytes accumulation, nutrient uptake, and antioxidant activities which can counter 
the toxic effects of DS in plants (Gharred et al., 2022). Okra and maize plants growing under DS with BC 
showed a marked increase in growth, similarly, wheat plants under semi-arid conditions also showed a 
significant increase with BC (Haider et al., 2015; Olmo et al., 2014). Biochar application increases leaf area 
which maintains optimum nutrient supply and, therefore, ensures better plant growth under water deficit 
conditions (Zheng et al., 2021). BC application also ensures better vegetative and reproductive growth and 
quality owing to a reduction in the toxic effects of osmotic and oxidative damage (Agbna et al., 2017). 
Moreover, other authors found BC could increase the growth of water-stressed plants by increasing 
photosynthesis, plant water relations and uptake of nutrients (Haider et al., 2015; Egamberdieva et al., 2017). 

Another study found that whereas BC application rates >60 t ha-1 had negative impacts on rapeseed 
growth and seed production under DS, however, BC treatment rates between 0 and 30 t ha-1 increased biomass 
and yield. Further BC application increased biomass, pods/plant, and 1000 seed weight by 23%, 32%, and 21% 
under DS (Khan et al., 2021) and BC treatment (0-30 t ha-1) raised biomass, pods/plant, and 1000 seed weight 
by 56%, 26%, and 15% in control conditions. DS also had a deleterious impact on the oil and protein levels, 
although BC significantly improved these components under DS (Khan et al., 2021).  

 
Biochar improves soil characteristics to improve DS tolerance Biochar improves soil characteristics to improve DS tolerance Biochar improves soil characteristics to improve DS tolerance Biochar improves soil characteristics to improve DS tolerance     
    
Biochar is a fantastic tool to improve soil health and crop productivity. According to reports, BC 

enhances the physical characteristics of soil under DS, such as soil density, soil moisture levels, and aggregate 
stability (Figure 3: Bamminger et al., 2016; Zhang et al., 2017). According to Zhang et al. (2017), BC enhanced 
the soil's characteristics and bacterial population, which helped tobacco plants to more effectively withstand 
stress. Abel et al. (2013) highlighted that additional BC application improved soil bulk density, water holding 
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capacity, and water retention, which considerably improved plants' ability to tolerate drought. According to 
Lehmann et al. (2011), BC also improves soil WHC and aggregate stability in coarse texture soils, both of 
which are crucial for plant growth. Soil microbial biomass (SMB), is crucial to the breakdown of organic matter 
and a higher SMB increases soil fertility and nutrient availability, additionally, it acts as a linkage between the 
sources and sinks of soil nutrients. (Marschner et al., 2015). Osmotic stress induced by drought stress results in 
microbial mortality and a decrease in SMB (Sanaullah et al., 2011). SMB decline brought on by a drought slows 
OM decomposition under DS (Hailegnaw et al., 2019), However, it has been demonstrated that BC increases 
OM, microbial activity, and nutrient levels while also improving nutrient levels in the soil, soil fertility, and 
plant growth (Cornelissen et al., 2018).  

Additionally, BC increases soil organic carbon, which improves soil enzymatic activity and microbial 
diversity as well as plant performance (Rahman et al., 2021). DS has detrimental effects on the biological 
qualities of soil, however BC significantly mitigates these effects and enhances soil biochemical properties. For 
instance, compared to the control and lower rates of BC treatment (28 g kg-1); the application of BC at the rate 
of 38 g kg-1 significantly enhanced the soil phosphorus (P: 18.72%), K (7.44%), soil carbon (11.86%), nitrogen 
mineralization (16.35%), and soil respiration (6.37%) (Zaheer et al., 2021).  

 

 
Figure 3. Figure 3. Figure 3. Figure 3. Biochar application improves soil bulk density, water holding capacity, aggregate stability, soil 
carbon contents, soil enzymatic and microbial activities and soil nutrient and water holding capacity thus 
ensures better plant growth under DS 
 
Limitations of using biochar amendmentsLimitations of using biochar amendmentsLimitations of using biochar amendmentsLimitations of using biochar amendments    
    
Biochar has a several applications for improving soil quality however, it also has several drawbacks (Liu 

et al., 2019). In the wrong circumstances, biochar can cause soil compaction however, with good planning and 
coordinated management, these difficulties relating to the soil could be managed. Biochar contains a number 
of pollutants, including heavy metals, metalloids, and dioxins, which could be detrimental to the health of 
plants and soil (Kavitha et al., 2018).  

Therefore, moderate pyrolysis temperatures of less than 500 °C or good quality feedstock (with few or 
no pollutants) could lessen the contamination problems (Liu et al., 2020). To reduce occupational health and 
fire threats, health and safety precautions must be taken during the manufacture, transportation, application, 
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and storage of biochar (Xu et al., 2015). The distribution of biochar pores changes the physical characteristics 
of soil, including aeration, habitat, and water retention. A high application of biochar can raise the pH and salt 
levels of the soil, which might eventually have an impact on earthworms (Shi et al., 2019). There is currently 
limited knowledge about biochar's ability to store carbon in soils. In the future, it is anticipated that a variety 
of environmental, economic, and social factors will influence the soil's ability to sequester carbon after the 
addition of biochar (Zhang et al., 2019). The handling, transportation, and storage of 23,000 tons of biomass 
per day by large processing facilities calls for high-capacity infrastructure (Hasnain et al., 2023). 

The presence of a hard cellulosic structure in feedstock can cause problems in BC production 
(Marousek et al., 2019). Additionally, if biochar is not generated by environmental regulations, it may result in 
several environmental problems, including concerns with local health, excessive deforestation, and greenhouse 
gas emissions (McCarl et al., 2009). The presence of volatile compounds in BC also affects germination and 
crop productivity (Pandey et al., 2020; Tripathi et al., 2020). During continuous pyrolysis, nutrients in 
biomass, namely nitrogen and sulfur, could be lost (Ndirangu et al., 2019). When it comes to air quality, 
biochar's ash content is a source of dust particulates that, if not properly handled, can lead to respiratory 
illnesses. Additionally, long-term crop residue use in the formation of biochar could disrupt local nutrient 
cycling loops and worsen soil health in particular places where nutrient circularity is poorly managed (Ashiq 
and Vithanage, 2020). 

 
 Synergistic enhancement of biochar properties to induce drought stress tolerance in plantsSynergistic enhancement of biochar properties to induce drought stress tolerance in plantsSynergistic enhancement of biochar properties to induce drought stress tolerance in plantsSynergistic enhancement of biochar properties to induce drought stress tolerance in plants    
    
Biochar is an imperative gold carbon to improve soil aggregation, soil water balance, nutrient and water 

holding capacity and reduce the erosion losses (Lee et al., 2019). Compost contains appreciably amount of OM 
and it also substantially improve the soil properties and plant productivity (Alshankiti and Gill, 2016). 
Therefore, BC can be combined with compost to get better results in terms of soil fertility and quality and 
resistance against abiotic stresses (Canellas and Olivares, 2014; Palansooriya et al., 2019). The characteristics 
of BC after pyrolysis can be affected by the addition of different additives (Lehmann and Joseph, 2009). 
According to Feng and Zhu (2018), the breakdown of lingo-cellulosic compounds by the use of iron or alkali 
can boost BC output. Similarly, adding phosphoric acid to the feedstock can improve the function groups, 
lower the pH of the soil, and have a favorable impact on the growth of the soil and plants (Peng et al., 2017). 

The combine use of BC and compost can have significant impact on nutrient absorption, and it also 
positive affect soil fertility, plant growth and soil water status (Abideen et al., 2021; Antonangelo et al., 2021). 
It is also possible to co-compose biochar with already-composted materials.  For example, BC composted with 
iron substantially improve Salix viminalis (three folds) growth, soil fertility and reduced the soil acidity 
(Lebrun et al., 2020). Similarly, Chenopodium quinoa plants showed an increase of 305% in yield with co-
composted BC application under nutrient poor sandy soils (Kammann et al., 2015). Likewise, use of peanut 
shells-based BC improved the yield of Chrysanthemum coronarium by 16%-107% and increase nutrient 
availability, SOM and water holding capacity (Liu et al., 2019). In another study application of BC and poultry 
manure compost increased the grain yield, leaf area and reduced the electrolyte leakage (Lashari et al., 2015) 
and Luo et al. (2017) also found an increase of >20% in growth of Sesbania canabina plants following 
application of BC and compost. Humic acid is an important substance to improve soil quality and application 
of BC and humic acid can lead to increase in leaf water contents, osmotic potential, electron transport and 
photosynthesis under DS (Haider et al., 2015; Zhao et al., 2019). 

Nano-materials are the key players to induce stress tolerance and combined application of BC and nano-
materials could be an important practice to ensure better plant growth under stress conditions (Cornelis et al., 
2014). For instance, application of Zn nano-particles (NPs) with BC (1%) improve the maize height, leaves, 
dry biomass, chlorophyll synthesis and reduced the EL, MDA and H2O2 production (Rizwan et al., 2019). 
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Likewise, Elshayb et al. (2022) found that BC and combined use of Zn-NPs induced positive impact on 
chlorophyll contents, RWC, plant height, chlorophyll synthesis, leaf area, panicles, panicle length, grain and 
biomass yield. These authors suggested that combined use of Zn-NPs and BC can be an optimum practice to 
maximize the grain yield and WUE in rice crop (Elshayb et al., 2022). Phyto-hormones govern all 
developmental aspects in plants and they participate in cellular signaling and regulate the plant responses and 
adaptions against stress conditions. For instance, in maize and wheat plants melatonin and combination with 
BC increased the chlorophyll synthesis, photosynthetic rate and grain yield and reduce the oxidative damages 
(Wei et al., 2015; Faraq et al., 2020).  

Different microbes including bacteria and AMF has shown the promising results to improve the plant 
growth by stimulating antioxidant activities, hormones and osmolytes accumulation, and genes expression 
(Jambon et al., 2018). The combination of BC and microbes could be an important approach to improve the 
plant growth and soil fertility (Ohsowski et al., 2018). For instance, application of BC in combination with 
Funneliformis mosseae and Pseudomonas increased grain yield, nutrient uptake and root colonization in Apium 

graveolens plants (Ning et al., 2019). Likewise, compost, BC and Thiobacillus thiooxidans promoted higher 
nutrient uptake in quinoa plants BC (Ramzani et al., 2017). On the other hand, BC in combination with 
Pseudomonas fluorescens alleviated toxic effects of DS in cucumber and lead to a marked increase root and shoot 
length, biomass production, chlorophyll synthesis, RWC and membrane integrity (Nadeem et al., 2017). The 
study findings of Hashem et al. (2019) showed that BC and Conocarpus erectus application improve drought 
tolerance, root and shoot growth, RWC, membrane stability, and nitrogen fixation by Cicer arietinum. Further 
in another study it was found that co-application of BC with PGPR showed a marked improvement in nutrient 
uptake, RWC growth traits as compared to control plants. Moreover, co-application of PGPR and BC also 
increased sugars, proteins, flavonoids, phenolic compounds, and DHAR, GR, POD and SOD activities as 
compared to control plants (Lalay et al., 2022).  

 
    
ConclusionsConclusionsConclusionsConclusions    
 
Drought stress causes a serious reduction in plant performance by disturbing plant physiological and 

biochemical functioning and increasing the production of ROS that damage the major molecules in plants. BC 
application improves plant water relations, nutrient and water uptake, photosynthesis, hormonal balance, and 
osmolyte accumulation and gene expression thus mitigating the adverse impacts of DS. However, the role of 
BC in mitigating the damaging effects of drought is not fully explored and many questions need to be answered. 
For example, there is no evidence about the role of BC on seed germination and it can be fascinating to explore 
how BC affect different mechanism involved in seed germination. Nutrient homeostasis plays an important 
role under DS and role of BC on nutrient uptake is poorly studied under DS, therefore, it is the need of time 
to underpin how BC affects nutrient channels and transporters under DS. Osmolytes and hormones play an 
imperative role against DS stress, and the role of BC in the accumulation of osmolytes and hormones is poorly 
studied. This is crucial to determine the complex relation between BC and the accumulation of different 
hormones and osmolytes under DS. The role of BC is mostly studied under control and more field studies are 
needed for the promising future of black gold.  

The use of BC can reduce the harmful effects of DS however, it depends on BC application rate, 
feedstock type, and properties of BC.  However, the performance of BC in mitigating drought stress can be 
increased by using BC in combination with other amendments. For instance, BC can be combined with 
microbes that can provide promising results to mitigate drought stress effects. Further, BC can also combine 
with composts, humic acid, nano-particles, and phyto-hormones to improve its performance in mitigating the 
adverse impacts of drought. Besides this engineered BC can be also used to mitigate the adverse impacts of 
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drought and future research must be conducted on this aspect. The continuous supply of BC is also an 
important task and wise strategies must be used for biochar production and its subsequent utilization. 
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